티스토리 뷰
최단 경로 문제
- 최단 경로 알고리즘은 가장 짧은 경로를 찾는 알고리즘을 의미한다.
- 다양한 문제 상황
- 한 지점에서 다른 한 지점까지의 최단 경로
- 한 지점에서 다른 모든 지점까지의 최단 경로
- 모든 지점에서 다른 모든 지점까지의 최단 경로
- 각 지점은 그래프에서 노드로 표현
- 지점 간 연결된 도로는 그래프에서 간선으로 표현
다익스트라 최단 경로 알고리즘 개요
- 특정한 노트에서 출발하여 다른 모든 노드로 가는 최단 경로를 계산한다.
- 다익스트라 최단 경로 알고리즘은 음의 간선이 없을 때 정상적으로 동작한다.
- 현실 세계의 도로(간선)은 음의 간선으로 표현되지 않는다.
- 다익스트라 최단 경로 알고리즘은 그리디 알고리즘으로 분류된다.
- 매 상황에서 가장 비용이 적은 노드를 선택에 임의의 과정을 반복한다.
다익스트라 알고리즘의 동작 과정
- 출발 노드를 설정한다.
- 최단 거리 테이블을 초기화한다.
- 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택한다.
- 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 테이블을 갱신한다.
- 위 과정에서 3번과 4번을 반복한다.
다익스트라 알고리즘의 동작 과정 전제 조건
- 알고리즘 동작 과정에서 최단 거리 테이블은 각 노드에 대한 현재까지의 최단 거리 정보를 가지고 있다.
- 처리 과정에서 더 짧은 경로를 찾으면 '이제부터는 이 경로가 제일 짧은 경로야'라고 갱신한다.
다익스트라 알고리즘의 특징
- 그리디 알고리즘: 매 상황에서 방문하지 않은 가장 비용이 적은 노드를 선택해 임의의 과정을 반족한다.
- 단계를 거치며 한 번 처리된 노드의 최단 거리는 고정되어 더 이상 바뀌지 않는다.
- 한 단계당 하나의 노드에 대한 최단 거리를 확실히 찾는 것으로 이해할 수 있다.
- 다익스트라 알고리즘을 수행한 뒤에 테이블에 각 노드까지의 최단 거리 정보가 저장된다.
- 완벽한 형태의 최단 경로를 구하려면 소스코드에 추가적인 기능을 더 넣어야 한다.
다익스트라 알고리즘: 간단한 구현 방법
- 단계마다 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택하기 위해 매 단계마다 1차원 테이블의 모든 원소를 확인(순차 탐색)한다.
import sys input = sys.stdin.readline INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정 # 노드의 개수, 간선의 개수를 입력받기 n, m = map(int, input().split()) # 시작 노드 번호를 입력받기 start = int(input()) # 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기 graph = [[] for i in range(n + 1)] # 방문한 적이 있는지 체크하는 목적의 리스트를 만들기 visited = [False] * (n + 1) # 최단 거리 테이블을 모두 무한으로 초기화 distance = [INF] * (n + 1) # 모든 간선 정보를 입력받기 for _ in range(m): a, b, c = map(int, input().split()) # a번 노드에서 b번 노드로 가는 비용이 c라는 의미 graph[a].append((b, c)) # 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환 def get_smallest_node(): min_value = INF index = 0 # 가장 최단 거리가 짧은 노드(인덱스) for i in range(1, n + 1): if distance[i] < min_value and not visited[i]: min_value = distance[i] index = i return index def dijkstra(start): # 시작 노드에 대해서 초기화 distance[start] = 0 visited[start] = True for j in graph[start]: distance[j[0]] = j[1] # 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복 for i in range(n - 1): # 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리 now = get_smallest_node() visited[now] = True # 현재 노드와 연결된 다른 노드를 확인 for j in graph[now]: cost = distance[now] + j[i] # 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우 if cost < distance[j[0]]: distance[j[0]] = cost # 다익스트라 알고리즘을 수행 dijkstra(start) # 모든 노드로 가기 위한 최단 거리를 출력 for i in range(1, n + 1): # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력 if distance[i] == INF: print('INFINITY') # 도달할 수 있는 경우 거리를 출력 else: print(distance[i])
다익스트라 알고리즘: 간단한 구현 방법 성능 분석
- 총 O(V)번에 걸쳐서 최단 거리가 가장 짧은 노드를 매번 선형 탐색해야 한다.
- 따라서 전체 시간 복잡도는 O(V^2)이다.
- 일반적으로 코딩 테스트의 최단 경로 문제에서 전체 노드의 개수가 5,000개 이하라면 이 코드로 문제를 해결할 수 있지만 노드의 개수가 10,000개를 넘어가는 문제라면? ☞ 우선순위 큐(Priority Queue)를 이용
출처: 동빈나의 이코테
'파이썬 > 알고리즘' 카테고리의 다른 글
다익스트라 최단 경로 알고리즘 ② (0) | 2021.05.27 |
---|
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 스마트워치
- 모듈
- 보안
- 함수
- mysql
- R
- 코드
- sql
- 파이썬
- Programming
- 클래스
- 머신러닝
- 경제신문
- 영어
- 경제
- 코테
- 프로그래머스
- 자바
- 코딩
- 영어회화
- plot
- 데이터분석
- 데이터
- 그래프
- SW
- 코딩테스트
- 개발
- python
- 프로그래밍
- 금리
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
글 보관함